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Solution to 15.pdf

False. Let G = Zo ® Z4. Let H be the subgroup Zs & 0 and K be the
subgroup generated by < (0,2) >. Then H ~ K but G/K ~ Zs ® Zs and
G/H ~ Z4. The quotient groups are not isomorphic.

True. Let 7 be a nontrivial element of S,,. Without loss of generality
assume that 7(1) # 1. Then, one has s # 1 such that 7(s) = 1. Since
n > 3, there exists t ¢ {1,s}. Let v = (s,t). Then, 7 xy(s) =7(t) =1=
v(1) = v *7(s). Note that 7(¢) = 1 will imply ¢ = 1 which contradicts our
choice of .

True. Let G/Z(G) =< yZ(G) >. For given g,h € G one has gZ(G) =
y"Z(G) and hZ(G) = y"Z(G). This implies g = y™z, and h = y"zp.
Then gh = y™zgy™zn = Y™ " 2g2, = Y"1 2pzg = Y™ 2Ry ™ 2g = hg. Thus,
G is abelian.

True. By Cauchy’s theorem since 3,7 are primes there exists g,h € G
such that o(g) = 3 and o(h) = 7. Claim:o(gh) = 21. If o(gh) = 1 then,
g=h"t ie, h €< g>n<h>= {1} by Lagrange’s theorem. Thus,
g = h = 1, contradiction. If o(gh) = 3 then as G is abelian one has
@#h=1= ¢ =h3=1. But, " = 1. So, h = h7- (h73)? = 1,
contradiction. Similarly, if o(gh) = 7 one gets g = 1. Hence, o(gh) = 21
and G is cyclic.

True. Every permutation of S, can be written as product of disjoint
cycles. Let 1 # 0 € S, and o = (ay, ..., a,) (b1, ..., by)... be decomposition
of o into product of disjoint cycles. Any cycle can be expressed as product
of transpositions. So let, (ai,...,a.) = (a1,a,)(a1,ar-1)...(a1,a2) be the
first cycle expressed as product of transpositions. Now, the transposition
(a1,a5) = (1,a1)(1,a;5)(1,a1) for j =r,...,2. Thus, the assertion.

Given A = ((1) _01), B = <é —Oz) One has A? = 1,B? = A? and

B~ 'AB = A~'. Now, the group generated by A and B with the above
relations is the group of quaternions. Since det(A) = det(B) = 1, the
above group is a representaion of quaternions in SL(2,C). Order of this
group is 8 and is notated Qg = {I, A, B, AB, A*, B*, (AB)*, —I} where x
is the conjugate-transpose operation. The subgroups of Qg are < A >, <
B >,< AB >, the centre {1,—1} and the nonproper subgroups Qs, {1}.
All these subgroups are normal in QQg. Thq quotient of Qg with its centre
has the cosets {{1,—1},{A,—A},{B,—B},{AB,—AB}}. This group is
isomorphic to the Klein 4-group as the relations [A]? = [B]? = [AB]? =
[1] and [A][B] = [AB],[A][AB] = [B],[B][AB] = [A] holds true. The
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subgroups < A >, < B > and < AB > are isomorphic to Zs. The
quotient group Qg/Z4 has order 2. Let us consider Qg/ < A >= {[A], [B]}.
One then has the relation [A]?> = [B]? = [A] and [A][B] = [B][A] = [B].
This implies that the quotient group is cyclic of order 2 and so & Zs.
Similarly, the subgroups < B > and < AB > also has quotient Z5

As m | n,let n/m =r € Z. Suppose G =< a >. Consider H :=< a" >.
We contend that H is a subgroup of order m. Indeed, if x € H then,
x = a™ for some t and 2™ = ™" = a™ = 1. Conversely let y™ = 1 for
y € G, then y = a® for some s. This gives, a™* = 1. Since o(a) = n one
has n | ms. Thus, y = a® = "™/ €< a” >= H. Hence H = {y €
G | y™ = 1}. Suppose K is another cyclic subgroup of G of order m. Let
K =< a* > where k is the smallest integer such that a* € K. One has
afm=1=n | km = km > n. Further, m is the smallest integer such
that a*™ = 1 because m = o(K) = o(a¥). Since a” = 1, we get the other
inequality km < n. Thus km = n which implies K = H.

Let G = (Z/2"Z)*. Forn =3, G = Z§ = {1,3,5,7}. Since every element
has order 2 one concludes that G is not cyclic for n = 3. Now for n > 3,
one has 23 | 2. We get a surjective homomorphism from G U {0} — Zs.
This map induces group homomorphism from G onto Zg . Since quotient
of a cyclic group has to be cyclic and Zg is not cyclic, we conclude that
G is not cyclic.

Let Do, =< {r,s | s> = e,r™ = e} >. One has ris = sr~¢ for 0 < i < n.
Let & € Z(Da,) then, {r = 7€ and &s = s&. If € = r’s/ then one has
risiy = ritlsi. Left multiplication by r=¢ gives s/r = rs’. As o(s) = 2
either j =0or j =1. If j = 0 we get r = r, which is true. If j = 1 we get
sr = rs, which is not true as Don is a nonabelian group for n > 3. Thus,
j = 0. This implies £ = r* and r’s = sr’. But, we have r*s = sr~%. This
implies sr’ = sr~* = 72! = ¢e. Since, o(r) = n, n divides 2i.

a. When n is odd and since 0 < ¢ < n we conclude i = 0. Then,
¢ =r"=eand Z(Da,) = {e}.

b. When n is even n = 2k and 2k divides 2i for k = i. Thus £ = 7! =
r* € Z(Day).

GL(2,R) acts on R? via multiplication then, the orbit of 0) is given by

(0
T 9 0 T . " ¢

{ Y eR| A 0) =y for A € GL(2,R)}. Since A[0,0]* = [0,0]* for

every A € GL(2,R), one has orbit of [0,0]" is {[0,0]*}.

Suppose [0, 0] # [a,b]! € R2. Then either a # 0 or b # 0 or both. If both

a and b are nonzero then
a\ (a1 1
b) \b 0 0

“ 1). If @ = 0 then choose A := (

Let, A := (b 0

2 é) and is b = 0 choose
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A = (8 (1)) Clearly, in all three cases A € GL(2,R) and hence any

nonzero element of R? lies in the orbit of [1,0]".

Let this action be denoted ¢. Then Ker(¢) ={g € G| ¢(9) =1} ={g €
GlaH=gaHVacG}={9€Glalgac HVaeG}={geG|ge
aHa 'Vae G}y = () aHa™'. Let K = () aHa !. Clearly, K < H.

a€eG aceG
Suppose N is a normal subgroup of G contained in H and containing K,

ie, K CN<H. Ifx € NC H then, grg~' € N for every g € G. This
implies N C gHg™ ! for every ¢ € G. Thus N C K. Hence, K is the
largest normal subgroup of G contained in H.

Consider the action of G on set X of all left cosets of H in G by left
multiplication, i.e., g — (aH — gaH). This gives an homomorphism ¢
of G to S,,. If we let K = Ker¢ then K is normal subgroup of G with
[G: K] = ¢(G) < Syp. Thus [G : K] divides nl. Also, for v € K, ¢(u) =1
implies g~ 'ug € H for every g € G. This implies K C H.



