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(1a.) False. Let G = Z2 ⊕ Z4. Let H be the subgroup Z2 ⊕ 0 and K be the
subgroup generated by < (0, 2) >. Then H ' K but G/K ' Z2⊕Z2 and
G/H ' Z4. The quotient groups are not isomorphic.

(1b.) True. Let τ be a nontrivial element of Sn. Without loss of generality
assume that τ(1) 6= 1. Then, one has s 6= 1 such that τ(s) = 1. Since
n ≥ 3, there exists t /∈ {1, s}. Let γ = (s, t). Then, τ ∗ γ(s) = τ(t) = 1 =
γ(1) = γ ∗ τ(s). Note that τ(t) = 1 will imply t = 1 which contradicts our
choice of t.

(1c.) True. Let G/Z(G) =< yZ(G) >. For given g, h ∈ G one has gZ(G) =
ymZ(G) and hZ(G) = ynZ(G). This implies g = ymzg and h = ynzh.
Then gh = ymzgy

nzh = ym+nzgzh = yn+mzhzg = ynzhy
mzg = hg. Thus,

G is abelian.

(1d.) True. By Cauchy’s theorem since 3,7 are primes there exists g, h ∈ G
such that o(g) = 3 and o(h) = 7. Claim:o(gh) = 21. If o(gh) = 1 then,
g = h−1, i.e., h ∈< g > ∩ < h >= {1} by Lagrange’s theorem. Thus,
g = h = 1, contradiction. If o(gh) = 3 then as G is abelian one has
g3h3 = 1 =⇒ g3 = h−3 = 1. But, h7 = 1. So, h = h7 · (h−3)2 = 1,
contradiction. Similarly, if o(gh) = 7 one gets g = 1. Hence, o(gh) = 21
and G is cyclic.

(1e.) True. Every permutation of Sn can be written as product of disjoint
cycles. Let 1 6= σ ∈ Sn and σ = (a1, ..., ar)(b1, ..., bt)... be decomposition
of σ into product of disjoint cycles. Any cycle can be expressed as product
of transpositions. So let, (a1, ..., ar) = (a1, ar)(a1, ar−1)...(a1, a2) be the
first cycle expressed as product of transpositions. Now, the transposition
(a1, aj) = (1, a1)(1, aj)(1, a1) for j = r, ..., 2. Thus, the assertion.

(2) Given A =

(
0 −1
1 0

)
, B =

(
i 0
0 −i

)
. One has A2 = 1, B2 = A2 and

B−1AB = A−1. Now, the group generated by A and B with the above
relations is the group of quaternions. Since det(A) = det(B) = 1, the
above group is a representaion of quaternions in SL(2,C). Order of this
group is 8 and is notated Q8 = {I,A,B,AB,A∗, B∗, (AB)∗,−I} where ∗
is the conjugate-transpose operation. The subgroups of Q8 are < A >,<
B >,< AB >, the centre {1,−1} and the nonproper subgroups Q8, {1}.
All these subgroups are normal in Q8. Thq quotient of Q8 with its centre
has the cosets {{1,−1}, {A,−A}, {B,−B}, {AB,−AB}}. This group is
isomorphic to the Klein 4-group as the relations [A]2 = [B]2 = [AB]2 =
[1] and [A][B] = [AB], [A][AB] = [B], [B][AB] = [A] holds true. The
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subgroups < A >,< B > and < AB > are isomorphic to Z4. The
quotient groupQ8/Z4 has order 2. Let us considerQ8/ < A >= {[A], [B]}.
One then has the relation [A]2 = [B]2 = [A] and [A][B] = [B][A] = [B].
This implies that the quotient group is cyclic of order 2 and so ∼= Z2.
Similarly, the subgroups < B > and < AB > also has quotient Z2

(3a.) As m | n, let n/m = r ∈ Z. Suppose G =< a >. Consider H :=< ar >.
We contend that H is a subgroup of order m. Indeed, if x ∈ H then,
x = art for some t and xm = amrt = ant = 1. Conversely let ym = 1 for
y ∈ G, then y = as for some s. This gives, ams = 1. Since o(a) = n one
has n | ms. Thus, y = as = ar(sm/n) ∈< ar >= H. Hence H = {y ∈
G | ym = 1}. Suppose K is another cyclic subgroup of G of order m. Let
K =< ak > where k is the smallest integer such that ak ∈ K. One has
akm = 1 =⇒ n | km =⇒ km > n. Further, m is the smallest integer such
that akm = 1 because m = o(K) = o(ak). Since an = 1, we get the other
inequality km 6 n. Thus km = n which implies K = H.

(3b.) Let G = (Z/2nZ)×. For n = 3, G = Z×8 = {1, 3, 5, 7}. Since every element
has order 2 one concludes that G is not cyclic for n = 3. Now for n > 3,
one has 23 | 2n. We get a surjective homomorphism from G∪ {0} −→ Z8.
This map induces group homomorphism from G onto Z×8 . Since quotient
of a cyclic group has to be cyclic and Z×8 is not cyclic, we conclude that
G is not cyclic.

(4) Let D2n =< {r, s | s2 = e, rn = e} >. One has ris = sr−i for 0 6 i < n.
Let ξ ∈ Z(D2n) then, ξr = rξ and ξs = sξ. If ξ = risj then one has
risjr = ri+1sj . Left multiplication by r−i gives sjr = rsj . As o(s) = 2
either j = 0 or j = 1. If j = 0 we get r = r, which is true. If j = 1 we get
sr = rs, which is not true as D2n is a nonabelian group for n > 3. Thus,
j = 0. This implies ξ = ri and ris = sri. But, we have ris = sr−i. This
implies sri = sr−i =⇒ r2i = e. Since, o(r) = n, n divides 2i.

a. When n is odd and since 0 6 i < n we conclude i = 0. Then,
ξ = ri = e and Z(D2n) = {e}.

b. When n is even n = 2k and 2k divides 2i for k = i. Thus ξ = ri =
rk ∈ Z(D2n).

5(i) GL(2,R) acts on R2 via multiplication then, the orbit of

(
0
0

)
is given by

{
(
x
y

)
∈ R2 | A

(
0
0

)
=

(
x
y

)
for A ∈ GL(2,R)}. Since A[0, 0]t = [0, 0]t for

every A ∈ GL(2,R), one has orbit of [0, 0]t is {[0, 0]t}.

5(ii) Suppose [0, 0]t 6= [a, b]t ∈ R2. Then either a 6= 0 or b 6= 0 or both. If both
a and b are nonzero then (

a
b

)
=

(
a 1
b 0

)(
1
0

)

Let, A :=

(
a 1
b 0

)
. If a = 0 then choose A :=

(
0 1
b 0

)
and is b = 0 choose
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A :=

(
a 0
0 1

)
. Clearly, in all three cases A ∈ GL(2,R) and hence any

nonzero element of R2 lies in the orbit of [1, 0]t.

6(i) Let this action be denoted φ. Then Ker(φ) = {g ∈ G | φ(g) = 1} = {g ∈
G | aH = gaH ∀ a ∈ G} = {g ∈ G | a−1ga ∈ H ∀ a ∈ G} = {g ∈ G | g ∈
aHa−1 ∀ a ∈ G} =

⋂
a∈G

aHa−1. Let K =
⋂

a∈G
aHa−1. Clearly, K C H.

Suppose N is a normal subgroup of G contained in H and containing K,
i.e., K ⊆ N CH. If x ∈ N ⊂ H then, gxg−1 ∈ N for every g ∈ G. This
implies N ⊂ gHg−1 for every g ∈ G. Thus N ⊆ K. Hence, K is the
largest normal subgroup of G contained in H.

6(ii) Consider the action of G on set X of all left cosets of H in G by left
multiplication, i.e., g 7→ (aH 7→ gaH). This gives an homomorphism φ
of G to Sn. If we let K = Kerφ then K is normal subgroup of G with
[G : K] ∼= φ(G) 6 Sn. Thus [G : K] divides n!. Also, for u ∈ K, φ(u) = 1
implies g−1ug ∈ H for every g ∈ G. This implies K ⊂ H.
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